Abstract 6929: Inter- and intratumoral PIK3CA subclonal diversity in breast cancer contextualized by single-cell multiomics

J. Zawistowski¹, I. Salas-Gonzalez¹, T. Tate¹, T. Morozova¹, K. Kennedy¹, D. Arvapalli¹, J. Remington¹, J. Marks², E. Hwang², G. Harton¹, V. Weigman¹, J. A. A. West¹

¹BioSkryb Genomics, Durham, NC, United States, ²Duke University Medical Center, Durham, NC, United States

Oligo-antibody binding

Count barcodes in

RNA libraries

TotalSeq™-A (4-digit code

Results N3451 4 Figure 1: PIK3CA subclonal diversity in DCIS/IDC tumors. A. cBioPortal Iollipop diagram showing domain location of PIK3CA mutations (driver, or 5 variants of unknown significance, VUS) among invasive breast cancer samples of published studies; lollipop height indicates mutation frequency among cohorts. Highlighted are domain locations of mutations found in single cells from Patient A (Δ E109, K111E, H1047R) and Patient B (N345T) of our study. B. Schematic of PIK3CA mutations found (Invasive or Patient relative exome amplified quenced Copy coverage low size) indicated classes PIK3CA numbe IS/IDC⁵ expression in cells narborin PIK3CA ΔE109 in Patient tumor A or PIK3CA N345T in Patient tumo Left: Single-cell protein expression from Patient A Δ E109 cells is indicated by antibody derived tag (ADT) counts from RNA arm of ResolveOME[™]. Colors indicate relative abundance between individual cells. Dominant protein signals from N345T Cell 1 from Patient B tumor. The signature is indicative of highlyproliferative stem-like and drugresistant cellular states.

Figure 2: Comprehensive single-cell CNV profiling of 12 DCIS/IDC tumors. Estimated ploidy for each chromosome is indicated for single cells (rows) from all patient tumors of the study, including Patient A and B harboring PIK3CA missense mutations. Cell typing ID is shown for each cell as well as pathological grouping of each cell.

	Batient B	PIK3CA mutations M345T ΔΕ109 K111E H1047R	In single cells from Patient A (Ductal Adenocarcinoma, IDAC) o B (DCIS & IDC) tumors, and their abundance, derived from enrichment of ResolveOME TM a cells. Gray icons indicate cells set that lack any <i>PIK3CA</i> variants. C number alteration plots from low o WGS (2M total reads, 1 Mb wind from the cells harboring the i <i>PIK3CA</i> mutation. <u>Distinct CNV</u> are associated with specific <u>mutations.</u> Several of these copy alterations are prototypical for DC
	Predicted Ploidy = 2 Pt. A Cell 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chromosome	AE109 Predicted Ploic Pt. B Pd. Pt. B Pt. B P	y = 2 Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosome
	Predicted Ploidy = 2 Pt. A Cell 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chromosome	ΔΕ109 Predicted Ploi P t. B P 0 16 17 18 19 202122 x y 0 1	dy = 2 Cell 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosome
	Predicted Piolog = 2 Pt. A Cell 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chromosome	ΔE109 Predicted Plo Pt. A Pt. A Add Add Pt. A Pt.	Idy = 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosone
	Predicted Ploidy = 2 Pt. A Cell 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Chromosome	ΔΕ109 Predicted Pic Predicted Pic Predicted Pic Predicted Pic Predicted Pic Predicted Pic Predicted Pic Pic Pic Pic Pic Pic Pic Pic	hidy = 2 A Cell 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosome
Abi to	Predicted Ploidy = 2 Pt. A Cell 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Chromosome	ΔΕ109 δ 16 17 18 19 202122 X Y 0 1	idy = 2 A Cell 4 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosome
	Predicted Ploidy = 2 Pt. A Cell 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 11 Chromosome	ΔΕ109 6 Predicted Pion 6 Pt. A 9 1 5 16 17 18 19 20222 x 1 0 1	Idy = 2 Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chromosome
omos 8	ome 9 10 11 12 13 14 15 16 17 18 19 20	2122 X Y _	
			Bulk Epithelial_cells Macrophage Monocyte Fibroblasts Endothelial_cells Stem_cells

American Association for Cancer Research **ANNUAL MEETING** 2024 • SAN DIEGO

K3CA tation	TCGA tissue	BaseJumper cell type	HPCA cell type	Cell cycle stage
111E	breast	epithelial	epithelial	S
047R	breast	epithelial	epithelial	G1
047R	breast	epithelial	epithelial	S
047R	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	S
E109	thyroid	epithelial	epithelial	G2M
E109	breast	endothelial	endothelial	S
E109	breast	hepatocyte	epithelial	S
E109	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	S
E109	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	G2M
E109	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	G1
E109	breast	epithelial	epithelial	G2M
345T	lung	macrophage	epithelial	G1
345T	-	-	-	-

Figure 3: Transcriptomic analysis of cells harboring mutant PIK3CA. A. TCGA tissue designation and BaseJumper® and Human Primary Cell Atlas (HPCA) cell type identification for Patient A and B PIK3CAmutant tumor cells. Cell cycle staging from RNA-level data is shown in the right-most column. Cell 2 from Patient tumor B lacked sufficient expressed transcripts for accurate cell ID calling. **B.** UMAP analysis depicting diversity of cell types across 12 DCIS/IDC tumors transcriptionally ascertained by ResolveOME[™]

Conclusions

• A *PIK3CA* mutational spectrum, displaying inter- and intra-tumoral variation, is defined within single cells from a subset of patients in a DCIS/IDC cohort

• Distinct copy number alteration profiles are associated with specific *PIK3CA* mutations, suggestive of a cooperativity between the two in clonal evolution and in invasiveness capacity

RNA and surface protein-level data contextualize the genomic lesions of *PIK3CA* mutations and copy number alterations by defining cell identity and cell state

References

Siegel et al. CA Cancer J Clin (2023) https://doi.org/10.3322/caac.21763

Cowell et al. Mol Onc (2013) https://doi.org/10.1016%2Fj.molonc.2013.07.005 Ward et al. CA Cancer J Clin (2015) https://doi.org/10.3322/caac.21321

Marks et al. *bioRxiv* (2023) https://doi.org/10.1101/2022.04.29.489440

Gorringe et al. *Modern* Pathology (2015) https://doi.org/10.1038/modpathol.2015.75

Acknowledgements

We thank the patients involved in this study for their gracious gift of tissue to fuel discovery: IRB PRO00034242 "Biologic Characterization of the Breast Cancer Tumor Microenvironment" (PI: Hwang)