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DeepVariant’s custom PTA model with SHF-QC workflow lowers false positives in single-cell WGS to bulk-tissue levels, preserves >85% detection sensitivity, enables 
unmatched somatic variant calling without bulk references, processes hundreds of cells per day, and enhances biological insight via variant prioritization.

Background & Methods Results: DeepVariant + SHF-QC benchmarking Results: DeepVariant + SHF-QC deconvolutes cancer heterogeneity
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Conclusions
• Custom model: We trained a DeepVariant model with Google DeepMind optimized for primary template 

amplification (PTA) Illumina data, outperforming prior variant callers.
• Scalable workflow: We built a Nextflow-based workflow enabling stringent variant QC, somatic calling without 

bulk normals, and lineage tracing across hundreds of high-pass WGS cells in one day.
• Improved performance: In conjunction, the DeepVariant PTA model + SHF-QC workflows exhibit reduced 

false positives to bulk-WGS levels while maintaining >85% sensitivity in SNV detection.
• Availability: The DeepVariant PTA model workflow is available through ResolveServicesSM. The SHF+QC 

workflow can be downloaded via github  (https://github.com/BioSkryb/bj-somatic-variantcalling).

BaseJumper® genome analysis workflows with custom DeepVariant showcase best 
performance in variant detection across classifications, chemistries and sample types

Motivation: Accurate variant identification is crucial in single-cell genomics 
to unravel disease evolution. Yet, biases from whole-genome amplification 
introduce noise and hinder interpretation.
Prior work: Existing variant refinement methods are often computationally 
inefficient and rely on matched bulk normals.
Goal: Develop a scalable workflow that removes false positives from 
BioSkryb single-cell variant calls, preserves variant detection sensitivity, and 
improves data interpretability.

Three HG002 single cells were analyzed with ResolveDNARM v2 and ResolveOME™ v2 alongside NIST WGS bulk. Variants 
were called at ~15× and ~20× using DNAScope and DeepVariant (PTA/Illumina models). HF-QC and SHF-QC were applied 
with BioSkryb optimized parameters; performance of variant calling was assessed with VCFEval vs GIAB v4.2.1 sets.

Figure 3. BioSkryb’s DeepVariant+HF-QC workflow reduces false positives in single-cell data to bulk levels while maintaining 
>85% variant detection sensitivity.
a) PPV versus GIAB set for baseline variant models (DeepVariant PTA/Illumina, DNAScope PTA/Illumina) and baseline models +HF-QC; the 

+HF-QC pipeline markedly improves PPV irrespective of variant calling method (orange shading).
b) SNV detectionsSensitivity, of callers+models described in (a); +HF-QC retains >85% sensitivity (~3 million variants).
c) False-positive counts of callers+models; DeepVariant (PTA)+HF-QC reduces false positive calls to bulk levels (orange shading).

Figure 1. Building the DeepVariant Primary Template Amplification (PTA) model.
The model was trained with Google’s DeepMind on GIAB reference cell lines (HG001, 
HG002) processed with ResolveDNARM and ResolveOME™ chemistries and sequenced 
with Illumina sequencing technology, including >350 cells with variability across builds, 
times, operators and sequencing depth. Figure 6. Lineage tracing with the DV+SHF-QC workflow.

a) Somatic SNVs detected per cell (45 single cells, dots).
b) Number of somatic mutations assigned to known mutational signatures (colors across cells).
c) Left: Phylogenetic tree from high-quality somatic calls; branch colors indicate marker mutations, node ids are displayed in black. 
Middle: Heatmap of marker mutations separating multicell branches. Right: CNV profiles (chr7, 1 Mb bins) show loss of heterozygosity 
(LOH) matches distinct branching in node 86 cells versus the remaining cells. Final heatmap shows a priori known marker variants 
consistent with the de novo inferred phylogeny topology.
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Utilizing the DeepVariant + SHF-QC workflow, we called somatic mutations and inferred lineage tracing over 45 
single cells coming from primary cancer data.
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Figure 4. SHF-QC workflow effectively separates 
germline from somatic variants.
Proportion (a) and number (b) of the HG002 ground truth 
germline variants erroneously unfiltered by the SHF-QC’s 
somatic module.

Figure 2. Building the Somatic Heuristic Filtering (SHF-QC) workflow. 
• The QC module processes single cells, generating BAM pileups and filtering variants by 

alignment quality, read clipping, and variant position across HQ supporting reads. 
• The somatic module aggregates read data across cells based on read support and total 

depth in position and then computes binomial and beta-binomial distributions to remove 
germline and low-input artifacts. 

• The phylogenetic module performs phylogenetic reconstruction using Sequoia and places 
variants across trees branches using TreeMut.

a b

Figure 5. SHF-QC workflow is computationally 
scalable and cost effective.
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